1,930 research outputs found

    Computational alternatives to obtain time optimal jet engine control

    Get PDF
    Two computational methods to determine an open loop time optimal control sequence for a simple single spool turbojet engine are described by a set of nonlinear differential equations. Both methods are modifications of widely accepted algorithms which can solve fixed time unconstrained optimal control problems with a free right end. Constrained problems to be considered have fixed right ends and free time. Dynamic programming is defined on a standard problem and it yields a successive approximation solution to the time optimal problem of interest. A feedback control law is obtained and it is then used to determine the corresponding open loop control sequence. The Fletcher-Reeves conjugate gradient method has been selected for adaptation to solve a nonlinear optimal control problem with state variable and control constraints

    Alternatives for Jet Engine Control

    Get PDF
    Approaches are developed as alternatives to current design methods which rely heavily on linear quadratic and Riccati equation methods. The main alternatives are discussed in two broad categories, local multivariable frequency domain methods and global nonlinear optimal methods

    Software architecture for a distributed real-time system in Ada, with application to telerobotics

    Get PDF
    The architecture structure and software design methodology presented is described in the context of telerobotic application in Ada, specifically the Engineering Test Bed (ETB), which was developed to support the Flight Telerobotic Servicer (FTS) Program at GSFC. However, the nature of the architecture is such that it has applications to any multiprocessor distributed real-time system. The ETB architecture, which is a derivation of the NASA/NBS Standard Reference Model (NASREM), defines a hierarchy for representing a telerobot system. Within this hierarchy, a module is a logical entity consisting of the software associated with a set of related hardware components in the robot system. A module is comprised of submodules, which are cyclically executing processes that each perform a specific set of functions. The submodules in a module can run on separate processors. The submodules in the system communicate via command/status (C/S) interface channels, which are used to send commands down and relay status back up the system hierarchy. Submodules also communicate via setpoint data links, which are used to transfer control data from one submodule to another. A submodule invokes submodule algorithms (SMA's) to perform algorithmic operations. Data that describe or models a physical component of the system are stored as objects in the World Model (WM). The WM is a system-wide distributed database that is accessible to submodules in all modules of the system for creating, reading, and writing objects

    The geology and petrology of the pre-camhrian basement "between Sirdal and Ã…seral, Vest Agder, Norway

    Get PDF
    The field relations and petrography of the rocks of the PreCambrian basement complex between Sirdal and Aseral, comprising two series of high-grade metamorphic gneisses separated by a structural discontinuity, syntectonic granites, intrusive quartz monzonites with thermal metamorphic aureoles and basic dykes, are described. During orogeny the gneisses were subjected to intense poly-phase deformation, three regional and two localised phases of which have been recognised. Minor fold relics within augen gneiss in the lower gneiss sequence suggest that this rock was involved in earlier deformation. the climax of metamorphic crystallisation occurred at the low-pressure granulite facies-amphibolite facies boundary with mineral parageneses corresponding closely with the sillimanite-cordierite-orthoclase subfacies of the Abukuma-type cordierite amphibolite facies except for the additional occurrence of orthopyroxene. Major and trace elements X.R.F. analyses of gneissic and some igneous rocks are presented. These data reveal significant differences between basic rocks of the two gneiss series, basic gneisses with different mineral assemblages and to a lesser extent different lithostatigraphical units in the upper gneiss series. Electron microprobe analyses of alkali feldspar, plagioclase, biotite, hornblende, clinopyroxenes, orthopyroxene, sphene, magnetite, ilmenite, chlorite, and garnet from several rock types are presented. With the exceptions of alkali feldspar, magnetite and ilmenite all minerals are chemically homogeneous and represent original equilibrium compositions. The chemical inhomogeneity of alkali feldspar resulted from post-crystallisation leaching and redistribution of alkalies, resistance to which is related to grain size. Equilibrium during original feldspar crystallisation is indicated by the restricted composition of plagioclase coexisting with alkali feldspar. The distribution of titanium and magnesium between coexisting silicates indicates equilibrium compositions, influenced by oxygen fugacity, the nature of the coexisting iron oxides and the tetrahedral aluminium content of the hydrous phases in addition to the rock composition. The application of several means of multicomponent paragenesis analysis reveals that the various mineral assemblages can be interpreted in terms of variations in major element rock composition and oxygen fugacity. The widespread molybdenite mineralisation is considered to have been transported from depth in siliceous hydrothermal solutions into the gneisses, especially where the strike of the gneissic layering coincided with deep fractures. Fixing of the metal as sulphide occurred particularly in the vicinity of pre-existing fahlband sulphide due to release of sulphur in the local environment of increased oxygen fugacity

    Structural Examination of Au/Ge(001) by Surface X-Ray Diffraction and Scanning Tunneling Microscopy

    Full text link
    The one-dimensional reconstruction of Au/Ge(001) was investigated by means of autocorrelation functions from surface x-ray diffraction (SXRD) and scanning tunneling microscopy (STM). Interatomic distances found in the SXRD-Patterson map are substantiated by results from STM. The Au coverage, recently determined to be 3/4 of a monolayer of gold, together with SXRD leads to three non-equivalent positions for Au within the c(8x2) unit cell. Combined with structural information from STM topography and line profiling, two building blocks are identified: Au-Ge hetero-dimers within the top wire architecture and Au homo-dimers within the trenches. The incorporation of both components is discussed using density functional theory and model based Patterson maps by substituting Germanium atoms of the reconstructed Ge(001) surface.Comment: 5 pages, 3 figure

    Simplified simulation models for control studies of turbojet engines

    Get PDF
    The essential dynamical characteristics of a simple single spool turbojet engine were determined through simulation of low order system models on an analog computer. An accurate model was studied and system complexity was reduced through various linearizations and approximations. A derivation of a seventh order simplified simulation model is presented with a derivation of an even simpler third order model, and simulation results from each. The control problem studied is one of getting from zero fuel flow equilibrium to a high thrust equilibrium while taking into account surge margin and turbine inlet temperature constraints

    Genetic structure of community acquired methicillin-resistant Staphylococcus aureus USA300.

    Get PDF
    BackgroundCommunity-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is a significant bacterial pathogen that poses considerable clinical and public health challenges. The majority of the CA-MRSA disease burden consists of skin and soft tissue infections (SSTI) not associated with significant morbidity; however, CA-MRSA also causes severe, invasive infections resulting in significant morbidity and mortality. The broad range of disease severity may be influenced by bacterial genetic variation.ResultsWe sequenced the complete genomes of 36 CA-MRSA clinical isolates from the predominant North American community acquired clonal type USA300 (18 SSTI and 18 severe infection-associated isolates). While all 36 isolates shared remarkable genetic similarity, we found greater overall time-dependent sequence diversity among SSTI isolates. In addition, pathway analysis of non-synonymous variations revealed increased sequence diversity in the putative virulence genes of SSTI isolates.ConclusionsHere we report the first whole genome survey of diverse clinical isolates of the USA300 lineage and describe the evolution of the pathogen over time within a defined geographic area. The results demonstrate the close relatedness of clinically independent CA-MRSA isolates, which carry implications for understanding CA-MRSA epidemiology and combating its spread

    Health benefits of 'grow your own' food in urban areas: implications for contaminated land risk assessment and risk management?

    Get PDF
    Compelling evidence of major health benefits of fruit and vegetable consumption, physical activity, and outdoor interaction with 'greenspace' have emerged in the past decade - all of which combine to give major potential health benefits from 'grow-your-own' (GYO) in urban areas. However, neither current risk assessment models nor risk management strategies for GYO in allotments and gardens give any consideration to these health benefits, despite their potential often to more than fully compensate the risks. Although urban environments are more contaminated by heavy metals, arsenic, polyaromatic hydrocarbons and dioxins than most rural agricultural areas, evidence is lacking for adverse health outcomes of GYO in UK urban areas. Rarely do pollutants in GYO food exceed statutory limits set for commercial food, and few people obtain the majority of their food from GYO. In the UK, soil contamination thresholds triggering closure or remediation of allotment and garden sites are based on precautionary principles, generating 'scares' that may negatively impact public health disproportionately to the actual health risks of exposure to toxins through own-grown food. By contrast, the health benefits of GYO are a direct counterpoint to the escalating public health crisis of 'obesity and sloth' caused by eating an excess of saturated fats, inadequate consumption of fresh fruit and vegetables combined with a lack of exercise. These are now amongst the most important preventable causes of illness and death. The health and wider societal benefits of 'grow-your-own' thus reveal a major limitation in current risk assessment methodologies which, in only considering risks, are unable to predict whether GYO on particular sites will, overall, have positive, negative, or no net effects on human health. This highlights a more general need for a new generation of risk assessment tools that also predict overall consequences for health to more effectively guide risk management in our increasingly risk-averse culture

    Engram size varies with learning and reflects memory content and precision

    Full text link
    Memories are rarely acquired under ideal conditions, rendering them vulnerable to profound omissions, errors, and ambiguities. Consistent with this, recent work using context fear conditioning has shown that memories formed after inadequate learning time display a variety of maladaptive properties, including overgeneralization to similar contexts. However, the neuronal basis of such poor learning and memory imprecision remains unknown. Using c-fos to track neuronal activity in male mice, we examined how these learning-dependent changes in context fear memory precision are encoded in hippocampal ensembles. We found that the total number of c-fos-encoding cells did not correspond with learning history but instead more closely reflected the length of the session immediately preceding c-fos measurement. However, using a c-fos-driven tagging method (TRAP2 mouse line), we found that the degree of learning and memory specificity corresponded with neuronal activity in a subset of dentate gyrus cells that were active during both learning and recall. Comprehensive memories acquired after longer learning intervals were associated with more double-labeled cells. These were preferentially reactivated in the conditioning context compared with a similar context, paralleling behavioral discrimination. Conversely, impoverished memories acquired after shorter learning intervals were associated with fewer double-labeled cells. These were reactivated equally in both contexts, corresponding with overgeneralization. Together, these findings provide two surprising conclusions. First, engram size varies with learning. Second, larger engrams support better neuronal and behavioral discrimination. These findings are incorporated into a model that describes how neuronal activity is influenced by previous learning and present experience, thus driving behavior.SIGNIFICANCE STATEMENT Memories are not always formed under ideal circumstances. This is especially true in traumatic situations, such as car accidents, where individuals have insufficient time to process what happened around them. Such memories have the potential to overgeneralize to irrelevant situations, producing inappropriate fear and contributing to disorders, such as post-traumatic stress disorder. However, it is unknown how such poorly formed fear memories are encoded within the brain. We find that restricting learning time results in fear memories that are encoded by fewer hippocampal cells. Moreover, these fewer cells are inappropriately reactivated in both dangerous and safe contexts. These findings suggest that fear memories formed at brief periods overgeneralize because they lack the detail-rich information necessary to support neuronal discrimination
    • …
    corecore